# Lesson 005 Sample Spaces and Events 

Wednesday, September 20


## Probability is the study of randomness and uncertainty.

## Statistical Experiments and Outcomes

## Experiment

- Any action with an uncertain outcome is an experiment.

| Tossing a coin.Observing the <br> reliability of an <br> integrated circuit.Experiencing the <br> events and <br> outcomes for a 24 <br> hour period of <br> your life. | Performing a <br> medical treatment. |
| :---: | :---: | :---: | :---: |

## Statistical Experiments and Outcomes

## Sample Space

- The collection of all possible outcomes from an experiment.
- Denoted $\mathcal{S}$

| Coin | Integrated Circuit | 24 Hours of Life | Medical Treatment |
| :---: | :---: | :---: | :---: |
| Heads or Tails | Operation or <br> Failure after t time <br> (over some <br> observation <br> window) | All possible events <br> that can occur in <br> life. | * Maybe worth <br> refining. |
| of procedure. |  |  |  |

## Statistical Experiments and Outcomes

## Event

- An outcome or collection of outcomes from the sample space.

| Coin | Integrated Circuit | 24 Hours of Life | Medical Treatment |
| :---: | :---: | :---: | :---: |
| Heads or Tails | Operation time | All events | Success or failure |
| Observe a head. | Fails before 60 <br> hours. | Cat wakes you up <br> five times. | Treatment is a <br> success. |
| Observe a tail. | Fails after 90 <br> hours. | Teach a decent <br> lecture. | Treatment is a <br> failure. |
| Observe a head or <br> tail. | Fails between 10 <br> and 80 hours. | Watch a movie <br> and eat dinner. | Treatment is either <br> a success or <br> failure. |

$$
\begin{gathered}
\mathcal{S}=\{1,3,5\} \\
\varnothing=\{ \},\{1\},\{3\},\{5\}, \\
\{1,3\},\{1,5\},\{3,5\},\{1,3,5\}
\end{gathered}
$$

A coin is flipped and then a 6 sided die is rolled. The corresponding outcome is recorded as a letter/number combination. How large is the sample space?
(A) 8 options.

You sit on the side of the road counting the number of cars that go by a particular location in an hour. What best describes the sample space?

Any real number, $\mathbb{R}$.
?

Any non-negative integer, $\mathbb{Z}^{+}$.
Any non-negative real number, $\mathbb{R}^{+}$.

Any integer, $\mathbb{Z}$.
$\square$

## Assume that $\mathcal{S}=\{A, B\}$. What are all possible events?

| $\{A\},\{B\}$. | $0 \%$ |
| :--- | :--- |
| $\{A\},\{B\},\{A, B\}$. | $0 \%$ |
| $\{A, B\}$ | $0 \%$ |
| None of the above | $0 \%$ |

Assume that $\mathcal{S}=\{1,2,3\}$. Which of the following is not a valid event?


## Complement

- Everything except for the event of interest. Think "not A".
- Written $A^{C}$

| $\delta$ | $A$ | $A^{C}$ |
| :---: | :---: | :---: |
| Heads or tails. | Flipping a head | Flipping a tail |
| Any standard card in a deck. | Drawing a heart | Drawing a diamond, club, or spade |
| Any digit, one to six, on a die. | Rolling less than 5 | Rolling a 6 |
| $\{10,20,30,40,50\}$ | $\{10,20,30,40,50\}$ | $\varnothing=\{ \}$ |

Assume a single card is drawn from a standard deck. What is the complement of the event "the card was a red ace"?

The card was a black ace (2 options).
$\square$
The card was a red non-ace (24 options).
$\square$

The card was a black non-ace (24 options).
$\qquad$
The card was anything other than a red ace ( 50 options).

## Union

- Everything in either of the events of interest. Think "A or B or both".
- Written $A \cup B$

| Heads or tails. | Flipping a head | Flipping a tail. | Flipping a head or tail. |
| :---: | :---: | :---: | :---: |
| Hars | Drawing a heart | Drawing an ace | Drawing a heart or the <br> ace of clubs, spades, or <br> diamonds. |
| Any standard card in a <br> deck. | Rolling a three | Rolling less than 5. |  |
| Any digit, one to six, on <br> a die. | Rolling less than 5 | $\{10,30,40\}$ | $\{10,20,30,40\}$ |
| $\{10,20,30,40,50\}$ | $\{10,20\}$ |  |  |

If $A$ is the event that a king is drawn, and $B$ is the event that a club is drawn, what is $A \cup B$ ?

The king of clubs is drawn.
Any king except for the king of clubs is drawn.

Any club except for the king of clubs is drawn.

Any club or king is drawn.

## Intersection

- Everything in both of the events of interest. Think "A and B".
- Written $A \cap B$

| Heads or tails. | Flipping a head | Flipping a tail. | $\varnothing=\{ \}$ |
| :---: | :---: | :---: | :---: |
| Any standard card in a <br> deck. | Drawing a heart | Drawing an ace | Drawing the ace of <br> hearts. |
| Any digit, one to six, on <br> a die. | Rolling less than 5 | Rolling a three | Rolling a three. |
| $\{10,20,30,40,50\}$ | $\{10,20\}$ | $\{10,30,40\}$ | $\{10\}$ |

If $A$ is the event that a king is drawn, and $B$ is the event that a club is drawn, what is $A \cap B$ ?

The king of clubs is drawn.
$\square$
Any king except for the king of clubs is drawn.

Any club except for the king of clubs is drawn.

Any club or king is drawn.

## If $A$ has two elements, and $B$ has one element, what must be true about $A \cup B$ ?

It has exactly three elements.
$\square$

## If $A$ has two elements, and $B$ has one element, what must be true about $A \cap B$ ?

It has exactly one element.
$\square$

Suppose a 6 -sided die is rolled. Let $A$ be the event that an even number is rolled, $B$ be the event that an odd number is rolled, and $C$ be the event that a four is rolled. Which statement is true?

$$
\begin{array}{ll}
A^{C}=B & 0 \% \\
\mathcal{S}=A \cup B & 0 \% \\
\mathcal{S}=A \cup B \cup C & 0 \% \\
B \text { and } C \text { are mututally exclusive. } & 0 \% \\
\text { All of the above } & 0 \%
\end{array}
$$

